||||| Matemática LaTeX: Demostración propiedades de Potencia

viernes, 8 de agosto de 2014

Demostración propiedades de Potencia


La Potenciación es una expresión matemática que se utiliza para expresar la multiplicación repetida de una misma cantidad de forma abreviada. Si tenemos un mismo número que se multiplica varias veces podemos expresar esa operación en forma de potencia.
Si un número se multiplica n veces por si mismo se puede representar como ese número elevado a la cantidad de veces que se multiplica.

\(  a\cdot a\cdot a\cdot a\ldots \cdot a = a^{n} \)   se multiplica n veces.

Ahora demostraremos algunas propiedades.

Potencia de exponente cero.
Todo número distinto de cero elevado a cero es igual a 1
 \( a^{0}= 1\)

Demostración:
 \( a^{0}= a^{n-n} \)  \(  , n \in \mathbb{N}\)

 \( a^{0}   = \dfrac {a^{n}} {a^{n}}\)

 \( a^{0}   = \dfrac { a\cdot a\cdot a\cdot a\ldots \cdot a} { a\cdot a\cdot a\cdot a\ldots \cdot a}\)

\( a^{0}= 1\)  \(  , n \in \mathbb{N}\)

Potencia exponente 1
Si un número no se multiplica por si mismo, es decir, se coloca una sola vez, es lo mismo que colocar el mismo  número.

\( a^{1}= a \)   No necesita demostración.

Multiplicación de potencias de igual base
Al multiplicar dos potencias de la misma base se coloca la misma base y se suman los exponentes.

\(a^{n}\cdot a^{m}= a^{n+m}\)

Demostración:

\(a^{n}\cdot a^{m}=\)\( \underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}}\)\( \underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{m-veces}}\)
                                       
\(a^{n}\cdot a^{m}=\)\( \underbrace{a \cdot a\cdot a\ldots\cdot{a}a \cdot a\cdot a\ldots\cdot{a}}_{{n+m-veces}}\)

\(a^{n}\cdot a^{m}= a^{n+m}\)

División de Potencias de Igual Base.
La división de dos potencias de igual base a es igual a la potencia de base a y exponente igual a la resta de los exponentes respectivos (la misma base y se restan los exponentes.

\(\frac{a^{n}}{a^{m}}= a^{n-m}\)

Demostración:

\(\frac{a^{n}}{a^{m}}= \frac{\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}}}{\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{m-veces}}}\)

\(= a^{n-m}\)

Potencia de una potencia.
La potencia de una potencia de base a es igual a la potencia de base a elevada a la multiplicación de ambos exponentes.

\((a^{n})^{m} = a^{n \cdot m} \)

Demostración:

\((a^{n})^{m}= (\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}})^{m}  \)

\((a^{n})^{m}= \underbrace{(\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}})\cdot (\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}}) \cdot \ldots \cdot (\underbrace{a \cdot a\cdot a\ldots\cdot{a}}_{{n-veces}})}_{{m-veces}} \)


\((a^{n})^{m}= \underbrace{(a\cdot a\cdot a\cdot a\ldots \cdot a)\ast (a\cdot a\cdot a\cdot a\ldots \cdot a)\ast\ldots\ast  (a\cdot a\cdot a\cdot a\ldots \cdot a)}_{{n\cdot m-veces}}   \)


\((a^{n})^{m}=a^{n \cdot m} \)



Potencia de un producto.
La potencia de un producto es igual a cada uno de los factores del producto elevados al exponente de dicha potencia. Es decir, una potencia de base (a.b) y de exponente "n", es igual al factor "a" elevado a "n" por el factor "b" elevado a "n".

\((a\cdot b)^{n}=a^{n}\cdot b^{n}  \)

Demostración:

\((a\cdot b)^{n}= \underbrace{(a b) \cdot (a b) \cdot (a b)  \cdot \ldots \cdot (a b)}_{{n-veces}}  \)

\((a\cdot b)^{n}=  \underbrace{a\cdot a\cdot a\cdot a\ldots \cdot a}_{{n-veces}} \underbrace{b\cdot b\cdot b\cdot b\ldots \cdot b}_{{n-veces}}\)


\((a\cdot b)^{n}= a^{n}\cdot b^{n}\)

Regla de cociente a una potencia.
Una fracción elevada a una potencia es lo mismo que el numerador elevado a la potencia y el denominador elevado a la potencia.

 \Big(\frac{a}{b}\Big)^n = \frac{a^n}{b^n}

Demostración:

\((\frac{a}{b})^{n}=  \underbrace{\frac{a}{b}\cdot \frac{a}{b}\cdot\frac{a}{b}\cdot \ldots \cdot \frac{a}{b}}_{{n-veces}} \)

\((\frac{a}{b})^{n}= \frac{\underbrace{a\cdot a\cdot a\cdot a\ldots \cdot a}_{{n-veces}}}{\underbrace{b \cdot b\cdot b\cdot b\ldots \cdot b}}_{{n-veces}}  \)


\((\frac{a}{b})^{n}= \frac{a^{n}}{b^{n}}\)


De esta forma se puede hacer muchas demostraciones con respecto a las propiedades de potencias, incluso utilizando la inducción matemática.
Espero les haya gustado estas demostraciones con la escritura Latex.



8 comentarios:

  1. Muy buen trabajo.
    Un saludo.

    ResponderEliminar
  2. Hola me gustó mucho tu trabajo, por favor podrías hacer una demostración de las potencias de exponente negativo y base entera y también de potencias de base fraccionaria y exponente negativo...saludos

    ResponderEliminar
    Respuestas
    1. Hola.
      Sí, no hay ningún problema. Eso si, cuando tenga tiempo agregaré aquí las demostraciones.
      Saludos.

      Eliminar
  3. Respuestas
    1. De nada Fabian, gracias por comentar.
      Saludos.

      Eliminar


Usa la opción "Nombre/URL" para comentar. Introduce tu nombre y escríbenos. Anímate a comentar, comentar en agradecer.